If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-260x=0
a = 13; b = -260; c = 0;
Δ = b2-4ac
Δ = -2602-4·13·0
Δ = 67600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{67600}=260$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-260)-260}{2*13}=\frac{0}{26} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-260)+260}{2*13}=\frac{520}{26} =20 $
| -2u+34=2(u-1) | | x+4x-8=216 | | 4(n+2)−2n=0 | | 2x-6=3+1-x-7 | | 33=-9-7n | | x=4x-8=216 | | 2(x-4)-6=-2(-8x+6)-4x | | 22+.12x=14+.16x | | 9=-7u+4(u+6) | | 5(w+2)=7w+28 | | 2x+32=7x-3 | | 22=-2(-9+k) | | 5(3j-4)=10 | | {2x+13}{3}=3x+2 | | 17x=91-4x | | 4(y-6)-6y=-14 | | 29=19+b | | 3x+50=149 | | B=9/7(j-74) | | k=39+0.008/0.026 | | 14/m=-4/9 | | 3/414/5x-2=11/4 | | 1/4(x+4x)+12=1/2(2−x)+10 | | 7x=50+5x | | 42×5/6=b | | 0.004(2-k)+0.03(k-1)=1 | | -10x^2(9-56x(9-1=0 | | 6x^2-24=-7x | | -35=-7v+4(v-5) | | x=x/5-1/5 | | 12n^2-10=12n | | -1/2(9x-18)=5x+28 |